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Abstract 

The general relationshipsf'(~tmax) x F(t~max) = - Q(Xmax) and (d ~/dxmax) =f(0~max)/f'(0~naax ) have 
been established, for a non-iosthermal thermogravimetric rate equation, where f(a) is the 
conversion function, F(c 0 is the conversion integral and Q(x) = x2eXp(x). 

For an nth order reaction, the dependence Xmax = Xma~ (n, A E/fiR) is analysed by solving of 
a transcendental equation, using an iterative method. 

The temperature integral, p(x), was inverted using a minimax approximation, with a relative 
percentage error of 2.13 x 10-4 in the interval x~ I-5, 92]. 

Keywords: DTG maximum; Inversion of temperature integral; nth order reaction; Thermo- 
gravimetry 

1. Introduction 

Theoretical studies have shown that the parameters of the DTG maximum can be 
used in some applications. For example, in the case of an nth order reaction, it is 
possible to find the kinetic parameters n, E and A by using the experimental values of 

. . . .  Tma x and (d~/d T)max [1]. Also, a differential method based on the expression of 
these parameters can be used to determine the kinetic parameters mentioned and to 
prove the supposed kinetic model [2]. 

The present paper has two parts. In the first part, two general relationships valid at 
the DTG maximum have been established. The second part is dedicated to a procedure 
for determination of the temperature at the DTG maximum, in the case where the 
kinetic parameters are known. This analysis enabled some new numerical methods of 
inversion of the temperature integral p(x)  to be elaborated. 
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2. General 

It is known that the kinetics of thermal destruction may be described by the following 
differential equation with separable variables 1-3]: 

dot 
- -  = A e - ~ E m r ) f ( a )  (1) 
dt  

where the notations have the usual meaning. 
If the heating rate, fl = (d T/dO,  is constant, the solution of Eq. (1) is: 

[" dc  E A 
F(00 = Jof(C) = ~ p(x)  

where: x = E / R  T and p(x)  = Sx ~ (e-U/u2)du.  

(2) 

3. First general relationship 

At the DTG maximum, because (d2c t /d t  2) = 0, Eq. (1) leads to Eq. (3) [3]. 

B e  - -  Xrnax ¢ 
R T  2 J-Ae f ( ~ m a x ) - - O  if f ( ~ ) ~ l  (3) 

m a x  

wheref'(ct) is the derivative off(0t) with respect to ~. 
Eq. (3) can be rewritten as: 

A E  , 
- -  X m a  x e ( max/= 2 . . . .  (3') 

A first general relationship can now be obtained by eliminating the parameter 
A between Eqs. (2) and (3). This relationship has the following expression: 

f'(0~max)F(0%ax) = - -  Q(Xmax) (4) 

where: Q(x)  = x2eXp(x).  

Whenf(e)  = 1, it follows that emax = 1, and thus (AE/flR)p(X,,ax) = 1, from which 

2 . . . . .  A E  
Xmaxe --  fl~-~ Q(Xmax) (5) 

Writing Eq. (4) for the case of an nth order reaction (f(~) = (1 -ct)"), the well known 
relationships (6) I-4] can be easily obtained: 

1 - n  
(1--0~)~ax 1 = 1 + a(Xmax) if n # l  (6a) 

n 

-ln(1-~max)=Q(xma~) if n = l  (6b) 

It is appropriate to introduce a new function, r(x), defined by the relationship: 

r(x) = 1 -- Q(x)  (7) 
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As a result, Eq. (6a) changes to Eq. (8) which, for Xma x ~ O(3, changes to the well- 
known relationship, Eq. (9) [4, 5] because lim r(x) = 0: 

(1 --00max ---~ n 1/(1 -n)[1 + (n --  l ) r (Xmax)]  1~in 1) (8) 

(1 - -  ~)max = nl/(1 -n) (9) 

Taking into account Eq. (9), the bracket on the RHS of Eq. (8) can be interpreted as 
a correction factor which reflects the finite character of x. 

Adopting the approximation [6, 7]: 

2 r(x) ~ - -  (10) 
x + 3  

Eq. (8) becomes: 

(1--Ct)max~n~/tl")[l+2n--1] 1 / ("- l ) -Xma x -~- 3 (11) 

Expanding the right hand side of Eq. (11) in a binomial series, gives Eq. (12) for high 
enough values of Xma x 

(1 --0Qmax ,~ /,/1/(1 -n) 1 q (12) 
Xma x "~ 3 

For example, ifx = 30, the following approximation, which is nearly identical with that 
of Gyulai and Greenhow [8], results 

(1 - Or)max ~ 1.061n 1/~1-n) (13) 

4. A second general relationship 

In order to find the reaction rate at the DTG maximum for a certain conversion 
functionf(ct), it is necessary to eliminate the parameter A between Eqs. (1) and (3) and 
Eqs. (1) and (5). The following relationships result: 

(d~---T) E f(Ctmax) 2 , 
max --  if f(~) ~ 1 (13a) gTma~f (%~) 

( d ~ )  E 1 if f ( a ) _ i  (13b) 
max---~ R T2~ax O(Xmax) 

Considering now that (dx/dt) = -(E/R T2), Eqs. (13) take the following forms: 

( a c t )  f(Ctm,.) if f(0t)~ 1 (13'a) 
max = f'(~max~-'-J 

< ) - ,  
~-x max Q(X~ax ) if f(e)---- 1 (13'b) 
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For an nth order reaction Eq. ( 13 'a) changes to Eq. (14) or (14'), the latter being a well 
known relationship [3]: 

d ( , , ]  _ 1-~max with n:~0 (14) 
\ a x /  max rl 

d-t m,x -- n R TEa x(1 -- e)m~x (14') 

Eq. (14') can be written in an equivalent form, Eq. (15), in order to determine kinetic 
parameters: 

E = d n  (15) 

where ~ = (R TZ~ax)/(fl(1 -~)max)(da/d t)m,.. Here, it is necessary to emphasize that the 
experimental determination of ~ implies a knowledge of the absolute rate (d~/dt) . . . .  
which requires a previous calibration of DTG. 

If it is supposed that d and Tma * are exactly determined, Eq. (15) leads to the 
following relationship between the relative errors in E and n. 

An AE 
- (16) 

n E 

This relationship shows that the relative error in the estimation of a parameter 
(determined by a particular method or arbitrarily chosen) leads to a similar relative 
error for an other parameter, determined using Eq. (15). 

If the experimental value of(1 - ~)max is precisely determined, more accurate approxi- 
mations of kinetic parameters n and E can be iteratively determined by coupling 
Eqs. (8) and (15). Usually, the initial approximation of n is found by using Eq. (9), 
therefore considering x = ~ ,  what means an overestimated value of n [1]. 

5. D e t e r m i n a t i o n  o f  the D T G  m a x i m u m  temperature  

This section refers to the determination of the temperature corresponding to the 
DTG maximum, in the particular case of an nth order reaction for which the kinetic 
parameters are known. 

By elimination off'(~max) from Eqs. (3') and (6), the following relationship can be 
written: 

2 9gmax A E  
Xmaxe ~- f iR [1 + (n - 1)r (Xmax)  ] (17) 

where: r(x) = 1 - Q(x). 
Eq. (17) is a transcendental equation in Xma x which allows the determination of the 

temperature corresponding to the DTG maximum when the kinetic parameters n, 
A and E are known. For consideration in Section 6, it is interesting to notice that the 
solution of Eq. (17), for the particular case of n = 0, is expressible in terms of the 
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inversion of the temperature integral, i.e. 

(,R) Xmax = p - 1  ~ (18)  

Eq. (17) was solved using the method of iteration [9] (i.e. the method of successive 
approximations). For  this purpose, Eq. (17) was written in the form: 

= I n  AE[1  + ( n -  1)r(Xk) ] -  21n x k (19) 
Xk + a iJ t¢ ' 

Inserting an initial value, x o, in the right hand side, the first approximation x 1 is 
obtained; this is substituted again leading to x 2, etc. The convergence of the procedure 
occurs since limk_o~ X k = X*. 

In order to apply this procedure it is necessary to calculate accurately the values of 
r(x) and of the logarithms. By calculation it was found that, for (AE)/(f lR) > 105 and 
x o = 10, the procedure converges for any value of n. Naturally, the convergence rate 
depends on the numerical parameters involved (n and (AE)/(flR)) as well as the initial 
approximation adopted for x o. 

The maximum precision obtainable is dependent only on the performance of the 
computat ion machine. However, it will be shown that a reasonable precision for the 
D T G  maximum temperature does not require a high precision in Xma x. Indeed, taking 
into account the definition of x = (E)/(R T) it can be shown that 

Ax A T  
t20) 

x T 

Supposing, for example, that Xma x = 30 and T = 500 K, the above relationship shows 
that an error of A T = 1 K corresponds to Ax = 0.06. 

Solving Eq. (17) enables the following to be established: 

Xma x ~ Xma x g/~ 

Tabulation of this dependence was performed for different values of n (0, 0.5 . . . .  4.0) 
and A E / f l R  ( 1 0 9 ,  1 0 1 °  . . .  1 0 2 5 ) .  It was found that Xma x for a given value of AE/ f lR ,  
changes slowly as n changes (see Table 1). 

However, the variation of Xma x as a function of log AE/ f lR  (n being fixed) is more 
pronounced (see below). 

The plots of Xma x as a function of log AE/f lR,  for an established value of n, suggest 
a dependence of the following type: 

b A E  
Xma x ~ a + --Z + cz where: z = log f i r  (21) 
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Table 1 
The values of x,,ax for various values ofn and AE/flR = l0 s 

/'/ X m a  x 

0.0 27.820 
0.5 27.852 
1.0 27.883 
1.5 27.913 
2.0 27.941 
2.5 27.969 
3.0 27.996 
3.5 28.023 
4.o 28.048 

The coefficients a, b, c from Eq. (21) were determined by using the method  of least 

squares. In this way, the following relations were obta ined  for z~ [9, 25]: 

n = 0 : x~a X ~ - 6.72775 q 
16.3425 

k 2.23069z 

n = 1 : Xma x ~ - -  6.72197 + - -  
17.2409 

k 2.23050z 

n = 2:Xma x ~ -- 6.70052 + 
17.9187 

k 2.22997z 

n =  3:Xma X ~ -- 6.66949 + 
18.4414 

k2.22925z 

n = 4 : xm~ x ~ - 6.63258 + - -  
18.8513 

+ 2.22843z (22) 

It was found that  the relative percentage errors, (IAxmax])/(Xmax), according to 
Eqs. (22) for ne[0 ,  4] and  z~[9, 25], were smaller than  0.1 (see, for example, Table 2). 
Tak ing  into account  Eq. (20), one can say that  the approx imat ions  Eq. (22) provide 

a de te rmina t ion  of Tma x with satisfactory accuracy. 

6. On the inversion of the temperature integral 

If the kinetic model  and  the parameters  A and  E are specified, Eq. (2) allows the 
thermograms to be simulated. Such an opera t ion may be carried out in two different 
ways with the convers ion c~ as known  and calculat ing T, or the reverse. 

The first method,  which requires a knowledge of the inverse of temperature  integral, 
has the following advantages:  
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Table 2 
A comparison of the accurate and approximate (Eq. (22)) values of Xmax for n = 1 and various values ofz = log 

(A E/fiR) 

Z Xma x Xapprox(Eq. (22)) 

9 15.271 15.268 
11 19.398 19.381 
13 23.610 23.601 
15 27.883 27.885 
17 32.200 32.211 
19 36.552 36.565 
21 40.931 40.940 
23 45.332 45.329 
25 49.751 49.730 

(1) as long as the problem of inversion is not difficult to solve, the calculation time is 
significantly reduced; 

(2) it is not necessary to find the explicit expression for :¢ from Eq.(2)-- this 
operation can be carried out only for certain kinetic models [10]; 

(3) by refining the calculations, the experimental data can be analysed by carrying 
out a regression after e (it is supposed that the conversion data are accurately 
determined, while the temperature values may be affected by errors); 

(4) by simulating the experimental errors with a pseudo-random number generator, 
it is possible to study how the calculated values of kinetic parameters are affected by the 
distribution of the sampling points on the TG curve [11], etc. 

The problem of inverting the temperature integral was first solved by Elder [12] 
using an original approximation: 

j = 3  

In p(x) ..~ ~ a~x j 
j = 0  

which he called the generalized Doyle equation [13]. In this way, Elder reduced this 
problem to the inversion of a third degree polynomial. It is possible that the author 
comments the precision of the procedure in the original paper [14]. 

An alternative method is to use a new type of generalized Doyle equation [15]: 

- In p (x) ~ AxB+ C (231 

which, as observed, allows a facile determination of the explicit expression for x. In 
addition, to achieve the highest possible accuracy (e < 2.4 × 10-6%), a Taylor correc- 
tion can be applied to the value of Xap p established by Eq. (23): 

A X  = X - -  Xap p ~ Q(Xapp) In P(Xapp) (24) 
ptx) 

because: - ( d l n  p(x))/(dx)) = 1/(Q(x)). 
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One observes that to calculate the correction, Eq. (24), it is necessary to use a routine 
providing very accurate values for p(x). 

The considerations in the previous section enable new methods of inversion of the 
temperature integral 

Adapting the iteration method derived here, the following relationship can be 
written: 

X k + l = y + l n p ( x k ) + X k  where: y = - - l n p ( x * )  (25) 

For  x > 5 and Xo = 5 the procedure converges. The convergence rate depends both 
on the initial approximation and the value of x. It was found by calculation that for 
a given initial value of x o there exists a value x (Xo) from which the convergence rate 
increases monotonously with x. 

The approximate  relationship, Eq. (21), suggests an approximate inversion of the 
temperature integral is given by equations of the type: 

b 
x "~ a + -  + cy where: y = - In p(x) (26) 

Y 

In order to obtain high precision, the interval xe[5,  100] was divided into two 
sub-intervals: I-5, 16] and [16, 100]. The coefficients a, b, and c corresponding to each 
sub-interval were found by a least squares method applied for integer x. The following 
relationships were obtained: 

14.3643 
x ~ - 4.45235 ~ ~ 0.912701y if y618.521,21.654] 

Y 

50.8793 
x ~ -- 7.54281 ~ ~ 0.979678y if y~[21.657,109.230] 

Y 

(27) 

The maximum values of the relative percentage error were found to be 0.207 (at 
x = 5) for the first interval and 0.237 (at x = 23) for the second. 

Applying the correction, Eq. (24), very accurate values were obtained. In this case, 
the maximum values of the relative percentage error corresponding to the two 
subintervals were: 5.07 × 10 -5 (at x = 5) and 1.11 × 10 -5 (at x = 16). 

In fact, the approximation,  Eq. (27), corresponding to the interval [16, 100] covers 
a wider range of x values. For example, the relative percentage error at x = 200 was 
found to be 0.49, according to Eq. (27), and 1.17 × 10 5 ifEq. (24) is applied. The last 
value is very near to that corresponding to the interval [16, 100] and proves the 
exceptional "efficiency" of the correction, Eq. (24). 

These results suggest strongly that the rational expressions of y = - In p(x) can be 
used to approximate with high accuracy the inversion temperature integral p -  ~ (x), on 
broad intervals of x values. As a consequence, a new approximation characterized by 
the lowest possible relative errors (the minimax approximation [16, 17]), has been 
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established in the interval xe[5,  92]: 

6.2953654 x 10-1 + 1.3631926 × 10- ly + 1.20371 × 10- ly2 -F 1.7090519 x 10- 3y3 
X :  

1+  1.3998524y+ 1.7181581 x 10 3y2 
(28) 

where y = - In p(x). 
The maximum relative percentage error of the approximation, Eq. (28), in the 

interval x~[5,  92] (or 8.521 < y < 101.065) is 2.13 x 10 -4. Taking into account Eq. (20), 
and supposing T = 1000 K, the error induced by the approximation, Eq. (28), is at most 
0.0021 K. Such an error is clearly insignificant for thermogravimetric studies. For 
x > 92, the relative percentage error increases monotonously (being 0.0086 at x = 150, 
for example) but remains much lower than the experimental error. 

As expected, the use of correction Eq. (24) for values given by the approximation 
Eq. (28) leads to extremely low relative errors (lower than 5,4 x 10-11 for xe[5 ,  92]) 
and as such is of no practical interest. 
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